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Abstract

A set of numerical tests was carried out to compare the retrospective time integral scheme in a self-memory model.

whose dynamic kernel is the barotropical quast geostrophic model, with the ordinary centered difference scheme in the barotropical quast

geostrophic model. The Rosshy-Haurwitz wave function w as taken as the initial fields for both schemes. The results show thatin compari-

son with the ordinary centered difference scheme the retrospective time integ ral scheme reduces by 2 orders of magnitude the forecast er-

ror, and the forecast error increases very little with lengthening of the time-step. T herefore the retrospective time integral scheme has ad-

vantages of improving the forecast accuracy, extending the predictable duration and reducing the computation amount.

Keywords:

Although the design of computing scheme in the
numerical w eather prediction is mainly to improve the
spacial difference, the research for improving the time
difference scheme has seen apparent progresses“NSJ
It is confirmed that the retrospective time integral
scheme adopted in a spectrum model, which utilizes
multi-time historical data, improves the accuracy of

(&7 n this article,

the numerical weather prediction
we apply the retrospective time integral scheme to a
simple difference model, perform numerical experi-

ments and present a comparison analysis.
1 Principle and formula

For convenience, the simplest barotropical quasi-
geostrophic model, i.e. the barotropical vorticity e-

quation model
L ygtr M

was employed as a dynamic kernel of the self-memory
model. Here ¢ denotes the relative vorticity, $is the
stream function, J () represents the Jacobin opera-
tor, and other symbols are all commonly used in me-
teorology. By changing the time integration into a
retrospective time integral scheme, which uses multi-
time historical data, a corresponding difference self-

numerical tests self- memory model retrospective time integral scheme.

memory model was derived as i
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where o, 0, Y, € are coefficients related to the self-
memory function, and p is a retrospective order. Let
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Then (1) may be rewritten as
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For the historical datd” including L-times be-
fore the time — p, let
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Then (3) can be rewritten as the prediction e-
quation in a matrix form

X, = YO+ PR+ FE= ZW, 4
w here
Z=|Y P F]. W=|R|. 5
E

To calculate the matrix W with multi-time his-
torical data, we obtained the least-square solution of
the matrix W from (4) as the following, based on
the generalized least-square method.

w= (22 "'z2"'X, 6
where () represents the transpose of the matrix,
() ! denotes the matrix inversion. Thus, we m ay
firstly calculate the coefficient matrix W in the self-
memory model equation from (6) utilizing the histori-
cal data in L-times before the time — p, then com-
pute the predictand at time ¢t= 1 from (3) with the
previous data from time — p—1 to time 0 (usually L
=30). The Haurwixz wavé 7 on the wave-number
equal to 4 was taken as the initial field ¥ at AA=A¢
=5’ for the globe (OE ~360°, 90°S ~360°N) in the

integral com putation.

kemel, the
barotropical quasi-geostrophic model, was also inte-

For comparison, the dynamic
grated with the same initial field, space grid length
AX=2A¢=5" and time step length A¢ for the globe,
except that an ordinary centered difference scheme
(forward difference at the first step) was taken in-
stead of the retrospective time integral scheme.

2 Comparison of prediction results

2.1 The retrospective scheme gives much greater
predictive accuracy

The retrospective time integral scheme in the
selfmemory model was integrated at one time-step
(see section 3 about the reason) of different lengths
At=1h,2h, -, 2160h (90 days). Meanwhile, the
ordinary centered difference time integral scheme in
the barotropical quasi-geostrophic model was also in-
tegrated at time-step length A¢=1h for different du-
rations, np te, 2160 h, (90 days). This follows the

C.F. L. difference computation stable condition, be-
cause the barotropical quasi-geostrophic model is a fil-
tered model, in which A¢=1h is usually used in pre-
diction tests. The predictive value of the relative vor-
ticity and its root-mean-square error (RMSE) from
the precise value (i. e. the Rossby-Haurwitz wave
analytical solution) were separately calculated with
both the above mentioned schemes.

Fig. 1(a) shows the results integrated for 5 days
from the two schemes. In the ordinary difference
scheme the predictive error increases obviously with
lengthening of the integral time during the first 24
hours of prediction. The order of the predictive error
reaches up to the same order as the precise solution
(10 7) at and after the 24th hour. The root-mean-
square of the predictive error (3. 75X 10 °) exceeds
the precise solution itself (3. 13X 10 °) at the 48th
hour of the prediction, i.e. the relative error is more
than 100%, which is not practicable.

However, it is inspiring that the retrospective
scheme produces much less predictive error at the or-
der of magnitude 10 * ~10" 7 and keeps stable till the
90th day of the prediction. The predictive error order
is 2~ 3 orders less than that from the ordinary differ-
ence scheme, which is 10 °.
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The predictive RMSEs of vorticity from the retrospective

) and the ordinary difference scheme (-—-—), (unit:

s . (a) For 5-day integration; (b) for 90-day integration.

2.2 The retrospective scheme is insensible to the in-
tegral time-step length A¢

The retrospective time scheme not only has the
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advantage of greater predictive accuracy, but also ap-
pears specially insensible to the integral time-step
length A7, Fig. 2 presents predictive root-mean-
square errors (RMSEs) of vorticity calculated from
the two schemes with only one-step integration at
various time-step lengths A¢=1h, 2 h, -+, 2160 h
(90 days) respectively. These numerical tests are just
for comparison, althongh the ordinary difference
scheme violates the C.F. L. condition for long time-

step length.
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Fig. 2. The predictive RMSEs of vorticity from the retrospective

scheme (

) and from the ordinary difference scheme (——--)
with one-step integration at various time step lengths A¢ (unit:
s . (a) ForA ¢ lengtheningup to 5 days; (b) for A¢ lengthening
up to 90 days.

Figure 2 shows very interesting results. The
predictive error from the ordinary difference scheme
increases monotonously with lengthening of A¢ for A¢
>>48 h, though the RMSE increases slow er than that
for Ar<"48h. The order of magnitude of the RM SE
reaches up to the same as the precise solution itself
(10 ), when the ordinary difference scheme is inte-
grated with one-step at step-length A7= 24 h. The
RMSE reaches up to 3.24X 10 °, which exceeds the
precise solution (3. 13X 10 °) in one-step integration
at step-length Ar=48h. In contrast. the RMSE or-
der from the retrospective scheme keeps so low as
10 *~10 " at all times with little increase as At
lengthens i.e. it is insensible to the integral time-
step length. Therefore, if there are long enough and
precise historical data, the A¢ may be much length-
ened by applying the retrospective time integral
schems . so, that, the computing, amount may be de-

creased and the predictable duration in practice may

be increased.

In addition, the ordinary centered difference
scheme was integrated continuously with multi-steps
at step-lengths Ar=1, 3, 6 h respectively. The pre-
dictive RMSEs of vorticity (see Fig. 3) increase
rapidly up to 10” or more at Ar=3 and 6 h, and then
the computing overflow happened at the 48th or 72nd
hour respectively. This confirms the basic principle of
the difference method, i.e. the time-step length At
is restrained with the space-grid length As in Ar<C
‘ AS/JEC| (¢ is wave speed), which is the so-called
C.F.L. condition. Therefore, the time-step length
At cannot be taken as too long, and consequently,
the computation amount and the predictable duration

are all limited in practice.
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Fig. 3. The RMSEs of predictive vorticity from the ordinary cen-

tered difference scheme (unit: s ).
3 Choice of the dynamic kernel

To choose a dynamic kernel of the retrospective
time integral scheme, we need to consider not only its
features, such as stability, convergence, forecast ac-
curacy, etc., but also a speciality for computation of

the retrospective scheme.

The barotropical quasi-geostrophic model with
the ordinary difference scheme may be written as

Yy a=J (g+f. D, where ¢ denotes the
stream function, and ¢ is the relative vorticity. The
Possion Equation is firstly iterated to obtain the 9%
&, which is usually relatively small in the order of
magnitude of 10°. Then by integrating ¢" " =
$r P27 (2% &)™ in time with the centered
difference scheme, we get the stream function IR
for the next step-time, which is com paratively accu-
rate and stable. For A< 3h, the order of magnitude
of predictive error of the stream function within 15
hours of integration is about 2 orders less than the
precise solution (the Rossby-Haurwitz wave analytic
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solution, 3.13X 10 ).

In the retrospective scheme, however, the dy-
namic kernel—the barotropical quasi-geostrophic
model—is written as &/ ¥=J (g+ fi P, and the
time integration has to be solved first so that the mul-
tirtime historical data may be used to determe the

q("+1) according to Eq. (3). Then the Possion E-

2 45n+1) (n+1D
- q

quation is solved iteratively to

predict the ¢ D In this process of solving the Pos-
sion Equation, the order of magnitude of the q(’ﬁL D
is about 10 °, which is corresponding to 10° of the
¢tV The difference of the orders of mag nitude
(nt+D nt1) . 14 .
between the ¢ and ¢ is about 10 . This
may lead to a large error of the predictive ¢ que
to iterating computation to solve the Possion Equa-
tion. The actual ¢"" " is on the order of 10’ in our
practical computation, i.e. the order of error of the
predictive ¢ s the same as that of the Yitself.
If this $"7" were continuously taken into the time
integration, the $""? would have a larger error

and would lose the predictability.

Therefore, we compute the time integration
with only one-step to determine the vorticity q(n‘ v
in the retrospective scheme. Fortunately, this predic-
tive accuracy is apparently greater than that from the
ordinary difference scheme. Furthermore, the predic-
tion is insensible to the time-step length. Thus we
may take a longer step-length Af in the retrospective
scheme. A successful annual forecast ex periment was
reported with one-step integration in a regional cli-
matic self-memory model", which produced a con-

siderably great accuracy and good effect.

In addition, we failed to improve the iterating
solution of the Possion Equation by adopting a double
precision computation, or different initial values and
boundary conditions, even heightening the calculating
precision request, etc. The reason might be the limi-
tation of the iterating solution itself in the Possion
equation.

There might be 3 ways to overcome this difficul-
ty: (1) to search for a better scheme to solve the Pos-
sion Equation; (2) to select another model as the dy-
namic kernel that is independent of the sequence of

time integral, such as the shallow water wave equa-
tions, or baroclinic primitive equation model etc.;
and (3) to lengthen the time-step length based on the
advantage of insensibility to time-step length and of
higher accuracy in the retrospective scheme.

4 Concluding remarks

The retrospective time integral scheme was
adopted in a difference model in this article. The nu-
merical tests show that, compared to the ordinary dif-
ference scheme, the retrospective time integral
scheme produces a reduction of 2 orders of magnitude
of the predictive error based on an ideal initial field,
and the time integration is insensible to the step-
length. This result is inspiring.

However, it would bring a large predictive error
of the stream function if multi-step (more than one-
step) integration were computed in the barotropical
quasi-geotrophic model as the dynamic kernel, be-
cause the time-integration must be firstly performed.
Therefore, it would be better to choose other dy namic
kernels in the future studies.
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